
ii) WORKING:

As X and Y are mid points of sides AB and AC respectively,

we have
$$AX = BX$$

&
$$AY = CY$$

We can observe that the above quadrilateral forms a parallelogram by using the result "A quadrilateral is a parallelogram if pair of opposite sides are equal and adjacent angles are supplementary". (can explore other possibilities)

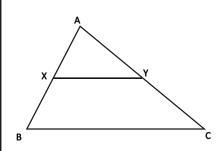
i) **CONCLUSION:** In a parallelogram of fig(iii) clearly we get that XY //BC and $XY = \frac{1}{2}BC$

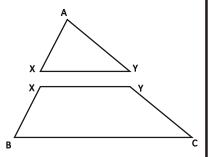
Some interesting info:

- ii) Eric Wienstein developed the "Midpoint Theorem".
- iii) Mid point theorem leads us to prove that intercepts made by parallel lines are equal/proportional

TARANG SCIENTIFIC INSTRUMENTS

DHARWAD


Phone: 0836-2775204 Cell: 94482 31960


www.tarangscientificinstruments.com

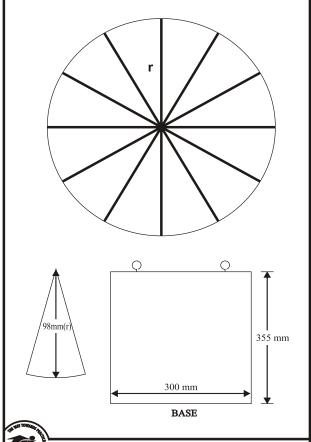
MID POINT THEOREM

In a Triangle, the line segment joining the mid points of any two sides is parallel to the third side and exactly half of the third side.

Assembly: Consists of a big triangle ABC with X and Y as mid points of AB and AC. Another congruent triangle ABC as two parts. A trapezium BCYX and a triangle AXY.

i) AIM:

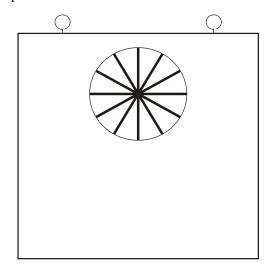
The aim of this experiment is to verify that in any triangle ABC if X and Y are mid points of sides AB and AC then,


$$XY//BC$$
 & $XY = \frac{1}{2}BC$

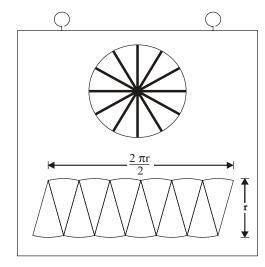
AREA OF A CIRCLE

To show that area of a circle of radius 'r' is πr^2

Assembly:


Consists of a circle of radius 98 mm cut out of a 6 mm Eva Rubber. 12 equal segments of radius 98 mm made out of plastic. A base of 355 mm x 300 mm made out of 12 mm Eva Rubber and 40 pins are part of the kit.

To do and observe:


Step 1:

Take the given circle and fix it on base using pins as shown below.

Step 2:

Now arrange the 12 segments below the circle as shown below

We get a figure parallelogram.

Therefore area of circle = Area of parallelogram

= length x breadth

$$= \frac{2 \pi r}{2} \times r$$

$$= \pi r^2$$

Result : Area of a circle is πr^2 where 'r' is the radius of the circle

