

TARANG SCIENTIFIC INSTRUMENTS

DHARWAD

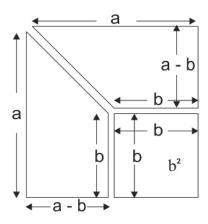
Phone: 0836-2775204 Cell: 94482 31960

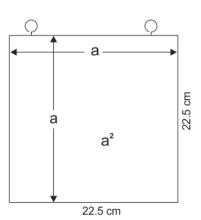
www.tarangscientificinstruments.com

ALGEBRA KIT - II

To prove geometrically

1.
$$a^2 - b^2 = (a + b) (a - b)$$


2.
$$(a - b)^2 = a^2 + b^2 - 2bc$$

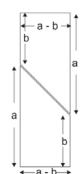

3.
$$(a - b - c)^2 = a^2 + b^2 + c^2 - 2ab + 2bc - 2ac$$

I. Identity: $a^2 - b^2 = (a + b) (a - b)$

It consists of square made out of 12 mm eva rubber of the size 22.5 x 22.5 cm. It has two hooks fixed to it and acts a base for the demo.

Also consists of 3 pieces which are cut out of 22.5x22.5 cm size 12 mm thick evarubber as follows.

To do and observe:


Step 1: Hang the a2 piece to the wall (or place it on a table)

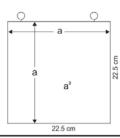
Step 2: Now pin the 3 piece on a base as shown in the above diagram.

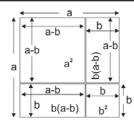
Step 3 : Remove the $b^a\,$ piece . By doing this you are subtracting $b^a\,$ from $a^a\,$

Now the remaining area is $a^2 - b^2$ (1)

Step 4: Now take out the top right cut pieces turn it back and arrange it as shown in the below diagram so as to form the rectangle

Area of rectangle = length x breadth = (a+b)(a-b)......(2)


Clearly Eqn. no. 1 = Eqn no. 2


So, $a^2 - b^2 = (a+b)(a-b)$

II. Identity:
$$(a - b)^2 = a^2 + b^2 - 2bc$$

It consists of square made out of 12 mm eva rubber of the size 22.5 x 22.5 cm. It has two hooks fixed to it and acts a base for the demo.

Also consists of 4 pieces which are cut out of 22.5x22.5 cm size 12 mm thick eva rubber as follows.

To do and observe:

Step 1: Hang the a2 piece to the wall (or place it on a table)

Step 2: Now arrange the 4 pieces on a² base and pin them as shown in the above diagram.

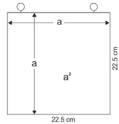
Step 3: Now area of base = a2(1)

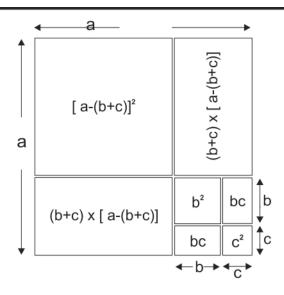
Total area of the cut pieces are

$$= (a-b)^2 + (a-b)b + b(a-b) + b^2$$

$$= (a-b)^2 + ab - b^2 + ab - b^2 + b^2$$

$$= (a-b)^2 + 2ab - b^2 \dots (2)$$


But, Eqn 1 = Eqn. 2


So,
$$a^2 = (a-b)^2 + 2ab - b^2$$

 $a^2 - 2ab + b^2 = (a-b)^2$

III. Identity: $(a - b - c)^2 = a^2 + b^2 + c^2 - 2ab + 2bc - 2ac$

It consists of square made out of 12 mm eva rubber of the size 22.5 x 22.5 cm. It has two hooks fixed to it and acts a base for the demo.

Also consists of 7 squares and rectangle pieces which are cut out of 22.5x22.5 cm size 12 mm thick eva rubber as follows.

Step 1: Arrange the seven pieces and pin them on the base a^2 Area of base is a^2(1)

Step 2: Total area of the pieces is:

$$[a-(b+c)]^{2} + (b+c) [a-(b+c)] + (b+c) [a-(b+c)] + b^{2} + bxc + cxb + c^{2}$$

$$= (a-b-c)^{2} + (b+c) (a-b-c) + (b+c) (a-b-c) + b^{2} + bc + bc + c^{2}$$

$$= (a-b-c)^{2} + ab-b^{2}-bc+ac-bc-c^{2}+ab-b^{2}-bc+ac-bc-c^{2}+b^{2}+c^{2}+2bc$$

$$= (a-b-c)^{2} + 2ab - 4bc + 2bc + 2ac - b^{2} - c^{2}$$

$$= (a-b-c)^{2} + 2ab - 2bc + 2ac - b^{2} - c^{2}$$

$$= (a-b-c)^{2} + 2ab - 2bc + 2ac - b^{2} - c^{2}$$

$$= (a-b-c)^{2} + 2ab - 2bc + 2ac - b^{2} - c^{2}$$
i.e. $a^{2}+b^{2}+c^{2}-2ab+2bc-2ac = (a-b-c)^{2}$